

28/03/2024

Brenda Scott Happy Grill/Covent Garden 65 Guild Street Clippers Quay London United Kingdom NW9 6FJ

\langle	41,637 kWh	Energy per year		\mathbb{Z}
\langle	£10,409	Saving per Year	Heating	
\langle	8,640 kg	CO² per Year		

It's nice to get mail that's not a bill isn't it? In fact, this is the very *opposite* of an energy bill.

Using the information you supplied about your premises, our DextCalc system has worked out how much money and energy a Dext heat recovery system could potentially save you and your organisation, as well as the reduction in CO² emissions.

You'll see the headline savings at the top right of this letter, where:

Heating is the total our system offers for heating incoming air in one heating season of just 170 days¹.

Cost savings are determined using a rate of 0.25 pence per kilowatt³, and detailed calculations are presented overleaf.

It's important to understand that these figures represent the performance the DexThermic is *capable* of, but we need to make sure you actually use and take advantage of all the energy it recoups.

We can advise your team on how to integrate the system intelligently into your premises to wring every bit of value from it. ...Otherwise it's a bit like having a high performance battery constantly charged up, and not plugging anything into it!

We know that customers appreciate transparent communication and we're passionate about providing practical solutions built for the real world.

Proposed product & system:

DAHX - 850 - 550 - 1800 - 19 - 500H - 1595 - C2 - QORA Run Around Version

Cost & Energy saving accumulative forecast:

Potential space pre-heating

Year 1: Year 2:	Saving = £10,409 Saving = £20,818	Energy = 41,637 kWh Energy = 83,273 kWh
Year 3:	Saving = £31,227	Energy = 124,910 kWh
Year 4:	Saving = £41,637	Energy = 166,547 kWh
Year 5:	Saving = <i>£52,046</i>	Energy = 208,183 kWh

The project over five years is forecast at a potential 'Heating' energy saving of over 208MW and £52k per site install.

The DexThermic QO-RA introduces a simplified approach to heat recovery, producing an initial level of heat that you can then 'top up'. It is designed to provide pre-heating to existing incoming air heating systems and will provide energy savings within the heating season¹. The DexThermic QO-RA gives your gas or electric heating a head start, to help you get more out of your main heating source. It helps reduce overall energy usage and operational costs.

For a system capable of providing space heating *and* domestic hot water. We suggest the DexThermic CO-HP for extract temperatures below 35°C and for extract temperatures above 90°C we suggest the DexThermic CO-HT system.

To explore more about the product range, or to delve into performance data in more depth – our DexThermic technical brochure can provide additional detail².

We are looking forward to discussing your project and its potential savings (both financial and environmental) in more detail. I will be in touch within the next 4-5 working days to agree on a mutually convenient meeting time for further discussions. Alternatively, you can reach out to me using the contact information provided below.

Yours sincerely, Neil Bracewell Commercial Director

Operational parameters:

Air extract volumetric flowrate : 3.5 m³ /s Maximum temperature in extract duct :Max extract temp = 40°C Minimum temperature in extract duct :Min extract temp = 30°C Energy cost³ : Based on current market conditions or client data = 0.25 P/kWh Carbon Intensity⁴ :Natural Gas emits: 0.200kg CO₂/kWh, Grid Electricity: 0.215kg CO₂/kWh with an average of: 0.207kg CO₂/kWh **Operation time** : 12 hours a day Average recovered energy : Based on 30°C to 40°C Extract : RCVY Quantity (Q) = 20.6kW, RCVY Quality (T) = 20.8°C **DAHX air side pressure drop** : Air P-Drop (Δ P) = 35.0Pa **DAHX fluid side pressure drop** :Fluid P-Drop (Δ P) = 13.1KPa Average power input, the energy to run the system :AVG. P-Input = 0.2kW Average energy output : AVG. E-Output = 20.4kWh Day energy output : Day E-Output = 244.9kWh Length of heating season¹:Heating Season = 170 Days/Yr Year space pre-heating energy saving potential:SPH E-Saving Potential = 41,637 kWh/Yr Year space pre-heating cost saving potential:SPH £-Saving Potential = £10,409/Yr Year space pre-heating CO² saving potential:SPH CO₂ savings \approx 8,640 kg/yr

Performance & savings overview:

DextCalc works out your potential savings by looking at minimum and maximum performance variables and taking an average. We've laid out the individual performance cases for clarity below.

Case 1.1 [MAX] Input		
Extract Flow	3.5m³/s	
Extract Temp	40.0 °C	
RCVY Quantity (Q)	23.4 kW	
RCVY Quality (T)	23.6 °C	
Air P-Drop (ΔP)	35.0 Pa	
Fluid P-Drop (ΔP)	13.1 kPa	
AVG. P-Input	0.2kWh	
Operation Time	12.0 Hr/Day	
AVG. E-Output	23.2 kWh	
Day E-Output	278.9 kWh	
Heating Season	170Days/Yr	
SPH E-Saving Potential	47,416kWh/Yr	
Energy Cost	0.25 P/kWh	
Carbon Intensity	0.208kg CO²/kWh	
SPH £-Saving Potential	11,854£/Yr	
SPH CO ² Savings	≈9,839 kg/Yr	

Case 1.2 [MIN] Input		
Extract Flow	3.5m³/s	
Extract Temp	30.0 °C	
RCVY Quantity (Q)	17.8 kW	
RCVY Quality (T)	17.9 °C	
Air P-Drop (ΔP)	35.0 Pa	
Fluid P-Drop (∆P)	13.1kPa	
AVG. P-Input	0.2kWh	
Operation Time	12.0 Hr/Day	
AVG. E-Output	17.6kWh	
Day E-Output	210.9 kWh	
Heating Season	170 Days/Yr	
SPH E-Saving Potential	35,858kWh/Yr	
Energy Cost	0.25 P/kWh	
Carbon Intensity	0.208kg CO²/kWh	
SPH £-Saving Potential	8,964£/Yr	
SPH CO ² Savings	≈7,440 kg/Yr	

Case 1.3 [AVRG] Input		
Extract Flow	3.5m³/s	
Extract Temp	35.0 °C	
RCVY Quantity (Q)	20.6 kW	
RCVY Quality (T)	20.8 °C	
Air P-Drop (ΔP)	35.0 Pa	
Fluid P-Drop (∆P)	13.1 kPa	
AVG. P-Input	0.2 kWh	
Operation Time	12.0Hr/Day	
AVG. E-Output	20.4 kWh	
Day E-Output	244.9 kWh	
Heating Season	170Days/Yr	
SPH E-Saving Potential	41,637kWh/Yr	
Energy Cost	0.25 P/kWh	
Carbon Intensity	0.208kg CO²/kWh	
SPH £-Saving Potential	10,409£/Yr	
SPH CO ² Savings	≈8,640 kg/Yr	

	Case 1.1 [MAX] - SPH Forecast Savings		
Year	Savings	Energy	
1	£11,854	47,416 kWh	
2	£23,708	94,831 kWh	
З	£35,562	142,247 kWh	
4	£47,416	189,662 kWh	
5	£59,269	237,078 kWh	

Case 1.2 [MIN] - SPH Forecast Savings		
Year	Savings	Energy
1	£8,964	35,858 kWh
2	£17,929	71,716 kWh
З	£26,893	107,573 kWh
4	£35,858	143,431 kWh
5	£44,822	179,289 kWh

	Case 1.3 [AVRG] - SPH Forecast Savings		
Year	Savings	Energy	
1	£10,409	41,637 kWh	
2	£20,818	83,273 kWh	
З	£31,227	124,910 kWh	
4	£41,637	166,547 kWh	
5	£52,046	208,183 kWh	

dextheatrecovery.com hello@dextheatrecovery.com +44 (0)1282 616666

Disclaime

Every effort is made to ensure that the information contained in DEXT Evolution literature, drawings and correspondence is accurate, but no warranty is given in this respect and the Company shall not be liable as a result of any inaccuracy. The Company reserves the right to alter at any time, without prior notice, the design, specification, packaging, or price of any article and without incurring any obligation.

References

- Building Research Establishment, Department of Energy & Climate Change. Report 4: Main Heating Systems. Energy Follow-Up Survey. s.l.: Department of Energy & Climate Change, 1/12/2013, https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/274772/4_Main_heating_systems.pdf
 Dext Evolution Ltd. DexThermic The Dirty Air Heat Exchanger. Sheffield, South Yorkshire, WEB-20230718-G3R32-DexThermic Tech Brochure.pdf, https://dext.ams3.digitaloceanspaces.com/wpcontent/uploads/2023/10/03100711/DextCalc-Sample-Report-Happy-Grill-compressed.pdf
- 3. Department for Business, Energy & Industrial Strategy. Prices of fuels purchased by non-domestic consumer in the United Kingdom, 30/3/2023, https://www.gov.uk/government/statistical-data-sets/gas-and-electricity-prices-in-the-non-domestic-sector
- 4. Department for Business, Energy & Industrial Strategy. Government conversion factors for company reporting of greenhouse gas emissions, 7/6/2023,

https://www.gov.uk/government/collections/government-conversion-factors-for-company-reporting

dly Supported By

